
Tokemak - Reserve
and Controllers

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: April 4th, 2022 - April 19th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) UNCHECKED TOKEN ADDRESS - MEDIUM 13

Description 13

Code Location 13

Risk Level 14

Recommendation 14

Remediation Plan 15

3.2 (HAL-02) EXPERIMENTAL FEATURES ENABLED - LOW 16

Reference 17

Code Location 17

Risk Level 17

Recommendation 17

Remediation Plan 18

3.3 (HAL-03) MULTIPLE ROLE-BASED ACCESS CONTROL MECHANISMS IMPLE-

MENTED - INFORMATIONAL 19

Description 19

1



Code Location 19

Risk Level 19

Recommendation 19

Remediation Plan 20

3.4 (HAL-04) MULTIPLE INITIALIZATION CRITERIA - INFORMATIONAL 21

Description 21

Code Location 21

Risk Level 22

Recommendation 22

Remediation Plan 22

3.5 (HAL-05) UNDERLYING TOKEN NOT ENFORCED - INFORMATIONAL 23

Description 23

Code Location 23

Risk Level 24

Recommendation 24

Remediation Plan 24

3.6 (HAL-06) CONFUSING VARIABLE NAMING - INFORMATIONAL 25

Description 25

Code Location 25

Risk Level 26

Recommendation 26

Remediation Plan 26

4 AUTOMATED TESTING 27

4.1 STATIC ANALYSIS REPORT 28

Description 28

Slither Results 28

2



4.2 AUTOMATED SECURITY SCAN 30

MYTHX 30

Results 30

3



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 04/18/2022 Francisco González

0.2 Draft Review 04/19/2022 Gabi Urrutia

1.0 Remediation Plan 07/04/2022 Francisco González

1.1 Remediation Plan Review 07/05/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn halborn@protonmail.com

Steven Walbroehl Halborn halborn@protonmail.com

Gabi Urrutia Halborn halborn@protonmail.com

Roberto Reigada Halborn halborn@protonmail.com

Francisco
González

Halborn halborn@protonmail.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com
mailto:Francisco.Villarejo@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Tokemak engaged Halborn to conduct a security audit on their Reserve

and Controller smart contracts beginning on April 4th, 2022, and

ending on April 19th, 2022. The security assessment was scoped

to the smart contracts provided in the Tokemak GitHub repository:

Tokemak/tokemak-smart-contracts.

1.2 AUDIT SUMMARY

The team at Halborn was provided two months for the engagement and assigned

a full-time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit to achieve the following:

• Ensure that all functions in the protocol smart contracts are

intended.

• Identify potential security issues in scoped smart contracts.

In summary, Halborn identified some security risks that were mostly

addressed by the Tokemak team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Tokemak/tokemak-smart-contracts/tree/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3


that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

7

EX
EC

UT
IV

E
OV

ER
VI

EW



5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

• controllers/ConvexController.sol

• controllers/WethController.sol

• controllers/CurveControllerETH.sol

• controllers/PoolTransferController.sol

• pools/PCAPool.sol

• pools/PCAEthPool.sol

• pools/Pool.sol (controlledBurn() and registerBurner() functions)

• Initial Commit ID: f27dd74d8e56b221eaf11185dbb5acc7ad1642a3

• Remediations Commit ID: f737f0423d7408d72c06f8410b94d4691b8c66c4

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Tokemak/tokemak-smart-contracts/tree/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts
https://github.com/Tokemak/tokemak-smart-contracts/blob/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts/controllers/ConvexController.sol
https://github.com/Tokemak/tokemak-smart-contracts/blob/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts/controllers/WethController.sol
https://github.com/Tokemak/tokemak-smart-contracts/blob/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts/controllers/CurveControllerETH.sol
https://github.com/Tokemak/tokemak-smart-contracts/blob/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts/controllers/PoolTransferController.sol
https://github.com/Tokemak/tokemak-smart-contracts/blob/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts/pools/PCAPool.sol
https://github.com/Tokemak/tokemak-smart-contracts/blob/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts/pools/PCAEthPool.sol
https://github.com/Tokemak/tokemak-smart-contracts/blob/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3/contracts/pools/Pool.sol
https://github.com/Tokemak/tokemak-smart-contracts/tree/f27dd74d8e56b221eaf11185dbb5acc7ad1642a3
https://github.com/Tokemak/tokemak-smart-contracts/tree/e054653afea699481965669aed1d3282111c7423


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 1 4

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)

(HAL-03)
(HAL-04)
(HAL-05)
(HAL-06)

10

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - UNCHECKED TOKEN ADDRESS Medium SOLVED - 07/04/2022

HAL02 - EXPERIMENTAL FEATURES
ENABLED

Low RISK ACCEPTED

HAL03 - MULTIPLE ROLE-BASED ACCESS
CONTROL MECHANISMS IMPLEMENTED

Informational ACKNOWLEDGED

HAL04 - MULTIPLE INITIALIZATION
CRITERIA

Informational SOLVED - 07/04/2022

HAL05 - UNDERLYING TOKEN NOT
ENFORCED

Informational SOLVED - 07/04/2022

HAL06 - CONFUSING VARIABLE NAMING Informational SOLVED - 07/04/2022

11

EX
EC

UT
IV

E
OV

ER
VI

EW



12

FINDINGS & TECH
DETAILS



3.1 (HAL-01) UNCHECKED TOKEN
ADDRESS - MEDIUM

Description:

The WethController.sol contract is based on WETH token contract to wrap

and unwrap ETH. This address is provided to the contract when it is

deployed.

However, this address is never checked to be the legitimate WETH token, and

any malicious administrator (with ADMIN_ROLE) could deploy this contract

with a custom WETH contract and drain the ETH balance from the Manager.sol

contract.

Code Location:

Listing 1: WethController.sol (Lines 12,18,21)

9 contract WethController is BaseController {

10 using SafeMath for uint256;

11

12 IWETH public immutable weth;

13

14 constructor (

15 address manager ,

16 address accessControl ,

17 address registry ,

18 IWETH wethContract

19 ) public BaseController(manager , accessControl , registry) {

20 require(address(wethContract) != address (0));

21 weth = wethContract;

22 }

Please note that weth address is never required to be registered in

registry or accessControl contracts in the same fashion is checked in

other controllers:

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 2: CurveControllerETH.sol (Line 57)

45 function deploy(

46 address poolAddress ,

47 uint256[N_COINS] calldata amounts ,

48 uint256 minMintAmount

49 ) external payable onlyManager onlyAddLiquidity {

50 address lpTokenAddress = _getLPToken(poolAddress);

51 uint256 amountsLength = amounts.length;

52

53 for (uint256 i = 0; i < amountsLength; i++) {

54 if (amounts[i] > 0) {

55 address coin = IStableSwapPoolETH(poolAddress).

ë coins(i);

56

57 require(addressRegistry.checkAddress(coin , 0), "

ë INVALID_COIN");

58

59 uint256 balance = _getBalance(coin);

60

61 require(balance >= amounts[i], "

ë INSUFFICIENT_BALANCE");

62

63 if (coin != ETH_REGISTRY_ADDRESS) {

64 _approve(IERC20(coin), poolAddress , amounts[i

ë ]);

65 }

66 }

67 }

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to ensure that the addresses provided are legitimate. To

prevent attacks like this from happening, make sure the provided address

is registered in the Address Registry, or even consider hardcoding the

WETH contract address.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

SOLVED: The Tokemak Team solved this issue by removing the previous

weth address declaration and configuring the query from AddressRegistry

contract instead.

Listing 3: WethController.sol (Lines 12,19)

9 contract WethController is BaseController {

10 using SafeMath for uint256;

11

12 IWETH public immutable weth;

13

14 constructor (

15 address manager ,

16 address accessControl ,

17 address registry

18 ) public BaseController(manager , accessControl , registry) {

19 weth = IWETH(IAddressRegistry(registry).weth());

20 }

Remediation Pull Request ID: https://github.com/Tokemak/tokemak-smart-contracts/

pull/357

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Tokemak/tokemak-smart-contracts/pull/357
https://github.com/Tokemak/tokemak-smart-contracts/pull/357


3.2 (HAL-02) EXPERIMENTAL FEATURES
ENABLED - LOW

Using experimental features could be dangerous on live deployments. The

experimental ABI encoder does not handle non-integer values shorter than

32 bytes properly. This applies to bytesNN types, bool, enum and other

types when they are part of an array or a struct and encoded directly from

storage. This means these storage references have to be used directly

inside abi.encode(. . . ) as arguments in external function calls or

in event data without prior assignment to a local variable. Using return

does not trigger the bug. The types bytesNN and bool will result in

corrupted data, while enum might lead to an invalid revert.

Also, arrays with elements shorter than 32 bytes may not be handled

correctly, even if the base type is an integer type. Encoding such

arrays in the way described above can lead to other data in the encoding

being overwritten if the number of elements encoded is not a multiple

of the number of elements that fit a single slot. If nothing follows

the array in the encoding (note that dynamically-sized arrays are always

encoded after statically-sized arrays with statically-sized content), or

if only a single array is encoded, no other data is overwritten. There are

known bugs that are publicly released while using this feature. However,

the bug only manifests itself when all the following conditions are met:

1. Storage data involving arrays or structs is sent directly to an

external function call, to abi.encode or to event data without prior

assignment to a local (memory) variable.

2. There is an array that contains elements with size less than 32

bytes or a struct that has elements that share a storage slot or

members of type bytesNN shorter than 32 bytes.

In addition to that, the code would not be affected in the following

cases:

1. If all the structs or arrays only use uint256 or int256 types.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



2. If only integer types (that may be shorter) are used and only encode

at most one array at a time.

3. If only such data is returned and is not used in abi.encode, external

calls or event data.

ABIEncoderV2 is enabled to be able to pass a struct type into a

function, both web3 and in another contract. Naturally, any bug can

have wildly varying consequences depending on the program control flow,

but it is expected that this is more likely to lead to malfunction

than exploitability. The bug, when triggered, will under certain

circumstances send corrupt parameters on method invocations to other

contracts.

Reference:

Solidity Optimizer and ABIEncoderV2 Bug

Code Location:

Listing 4

1 Pool.sol :3: pragma experimental ABIEncoderV2;

2 CurveControllerETH.sol :4: pragma experimental ABIEncoderV2;

3 ConvexController.sol :3: pragma experimental ABIEncoderV2;

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

When possible, do not use experimental features in the final live

deployment. Validate and check that all the above conditions are true

for integers and arrays (i.e., all using uint256).

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/


Remediation Plan:

RISK ACCEPTED: The Tokemak Team accepted the risk of this issue.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.3 (HAL-03) MULTIPLE ROLE-BASED
ACCESS CONTROL MECHANISMS
IMPLEMENTED - INFORMATIONAL

Description:

It has been detected that Role-Based Access Control functionalities have

been implemented multiple times.

For example, controllers like ConvexController.sol will call hasRole()

function from the _accessControl address supplied in the deployment

to check for permissions, meanwhile contracts like Manager.sol also

implement RBAC locally.

Code Location:

Listing 5: Pool.sol

90 function registerBurner(address burner , bool allowedBurner)

ë external override onlyOwner {

91 require(burner != address (0), "INVALID_ADDRESS");

92 registeredBurners[burner] = allowedBurner;

93

94 emit BurnerRegistered(burner , allowedBurner);

95 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to follow a uniform pattern when developing

functionalities across different contracts. This is considered a good

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



practice, and having functionalities like RBAC implemented only once

will significantly ease any further code modification or role management

operation that might be necessary.

Remediation Plan:

ACKNOWLEDGED: The Tokemak Team acknowledged this issue and confirmed

that Controllers are deployed with the accessControl variable set to

Manager address.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.4 (HAL-04) MULTIPLE
INITIALIZATION CRITERIA -
INFORMATIONAL

Description:

It has been observed that contracts such as PCAPool.sol and PCAEthPool

.sol declare an constructor() function using the initializer modifier,

which can also be found in the initialize() function. This function is

usually declared to avoid manual contract deployment instead of using a

proxy, rendering the contracts unusable since it would be initialized

with null values. However, the constructor has not been declared in

previous contracts such as Pool.sol.

Code Location:

Listing 6: PCAPool.sol (Lines 20,26)

20 constructor () public initializer {}

21

22 function initialize(

23 ILiquidityPool _pool ,

24 string memory _name ,

25 string memory _symbol

26 ) external initializer {

27 require(address(_pool) != address (0), "ZERO_ADDRESS");

28

29 __Context_init_unchained ();

30 __Ownable_init_unchained ();

31 __Pausable_init_unchained ();

32 __ReentrancyGuard_init_unchained ();

33 __ERC20_init_unchained(_name , _symbol);

34 __ERC20Pausable_init_unchained ();

35

36 pool = _pool;

37 underlyer = pool.underlyer ();

38 require(address(underlyer) != address (0), "POOL_DNE");

39 }

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to follow a uniform pattern when defining deploying

and initialization criteria along smart contracts. This is considered a

good practice and will improve code readability and usability.

Remediation Plan:

SOLVED: The Tokemak Team solved this issue by standardizing the

initialization criteria, adding the missing constructor to Pool.sol and

EthPool.sol contracts.

Listing 7: Pool.sol (Line 69)

67 // @custom:oz-upgrades -unsafe -allow constructor

68 //solhint -disable -next -line no -empty -blocks

69 constructor () public initializer {}

Remediation Pull Request ID: https://github.com/Tokemak/tokemak-smart-contracts/

pull/355

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Tokemak/tokemak-smart-contracts/pull/355
https://github.com/Tokemak/tokemak-smart-contracts/pull/355


3.5 (HAL-05) UNDERLYING TOKEN NOT
ENFORCED - INFORMATIONAL

Description:

It has been detected that PCAEthPool.sol contract does not enforce that

the underlying token is wETH, which could cause every ETH transaction

with this pool to fail if a pool with an underlying token different from

wETH is mistakenly used during the initialization:

Code Location:

Listing 8: PCAEthPool.sol (Line 40)

25 function initialize(

26 ILiquidityEthPool _pool ,

27 string memory _name ,

28 string memory _symbol

29 ) external initializer {

30 require(address(_pool) != address (0), "ZERO_ADDRESS");

31

32 __Context_init_unchained ();

33 __Ownable_init_unchained ();

34 __Pausable_init_unchained ();

35 __ReentrancyGuard_init_unchained ();

36 __ERC20_init_unchained(_name , _symbol);

37 __ERC20Pausable_init_unchained ();

38

39 pool = _pool;

40 weth = ERC20(pool.underlyer ());

41 require(address(weth) != address (0), "POOL_DNE");

42 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Apparently, this smart contract is designed to work with wETH as an

underlying token. In that case, it is recommended to check that pool.

underlyer() is wETH actual direction to prevent deploying a nonfunctional

smart contract.

Remediation Plan:

SOLVED: The Tokemak Team solved this issue by using the wETH token

address defined in AdressRegistry.sol instead of setting it again when

initializing the contract.

Listing 9: EthPool.sol (Line 86)

67 weth = IWETH(IAddressRegistry(_addressRegistry).weth());

68

Remediation Pull Request ID: https://github.com/Tokemak/tokemak-smart-contracts/

pull/358

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Tokemak/tokemak-smart-contracts/pull/358
https://github.com/Tokemak/tokemak-smart-contracts/pull/358


3.6 (HAL-06) CONFUSING VARIABLE
NAMING - INFORMATIONAL

Description:

It has been observed that lptoken and lpToken variables are used in

ConvexController.sol contract. These variables are used to set the Curve

LP token to deposit and to store the underlying LP token from the selected

pool.

Although lptoken is only used once in the contract, having similar

variable names could lead to development or usage errors and decrease

code’s readability.

Code Location:

Listing 10: ConvexController.sol (Lines 51,52)

46 ) external onlyManager onlyAddLiquidity {

47 require(addressRegistry.checkAddress(lpToken , 0), "

ë INVALID_LP_TOKEN");

48 require(staking != address (0), "INVALID_STAKING_ADDRESS");

49 require(amount > 0, "INVALID_AMOUNT");

50

51 (address lptoken , , , address crvRewards , , ) = BOOSTER.

ë poolInfo(poolId);

52 require(lpToken == lptoken , "POOL_ID_LP_TOKEN_MISMATCH");

53 require(staking == crvRewards , "POOL_ID_STAKING_MISMATCH")

ë ;

54

55 _approve(IERC20(lpToken), amount);

56

57 uint256 beforeBalance = IConvexBaseRewards(staking).

ë balanceOf(address(this));

58

59 bool success = BOOSTER.deposit(poolId , amount , true);

60 require(success , "DEPOSIT_AND_STAKE_FAILED");

61

62 uint256 balanceChange = IConvexBaseRewards(staking).

ë balanceOf(address(this)).sub(

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



63 beforeBalance

64 );

65 require(balanceChange == amount , "BALANCE_MUST_INCREASE");

66 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is considered a good practice to follow a uniform naming criteria,

avoiding the usage of similar variable names.

Remediation Plan:

SOLVED: The Tokemak Team solved this issue by maintaining the name

lpToken, and changing lptoken to poolLpToken in the ConvexController.sol

contract.

Listing 11: ConvexController.sol (Lines 51,52)

51 (address poolLpToken , , , address crvRewards , , ) =

ë BOOSTER.poolInfo(poolId);

52 require(lpToken == poolLpToken , "POOL_ID_LP_TOKEN_MISMATCH

ë ");

53 require(staking == crvRewards , "POOL_ID_STAKING_MISMATCH")

ë ;

Remediation Pull Request ID: https://github.com/Tokemak/tokemak-smart-contracts/

pull/356

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Tokemak/tokemak-smart-contracts/pull/356
https://github.com/Tokemak/tokemak-smart-contracts/pull/356


27

AUTOMATED TESTING



4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped contract. Among the tools used was Slither, a Solidity

static analysis framework. After Halborn verified all the contracts in the

repository and was able to compile them correctly into their abi and binary

formats. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither Results:

28

AU
TO

MA
TE

D
TE

ST
IN

G



• High and Medium vulnerabilities flagged by Slither were checked

individually, and they are all false positives.

• No major issues found by Slither.

29

AU
TO

MA
TE

D
TE

ST
IN

G



4.2 AUTOMATED SECURITY SCAN

MYTHX:

Halborn used automated security scanners to assist with detecting

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. MythX, a security analysis service for

Ethereum smart contracts, is among the tools used. MythX was used to

scan all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

Results:

PCAPool.sol

PCAEthPool.sol

30

AU
TO

MA
TE

D
TE

ST
IN

G



ConvexController.sol

CurveControllerEth.sol

PoolTransferController.sol

31

AU
TO

MA
TE

D
TE

ST
IN

G



- No issues were found by MythX for Pool.sol and WEthController.sol

- DoS with Failed Call flagged by MythX is a false positive.

- Assert violations flagged by MythX are false positives.

- Requirement violations flagged by MythX are false positives.

- Reentrancies flagged by MythX are false positives.

- Usage of “++” is safely used.

- No major issues found by MythX.

32

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Reference
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither Results

	AUTOMATED SECURITY SCAN
	MYTHX
	Results



